		The Ce	ement Grinding Art Of Sharing andImaginat	Office	
					<u>FR</u>
Home		About Us	Services	Mining Area	Links and Contact
	Particle 7 Ros - / - / - 1 - 7 - 7 - 7 - 7 - 7 - 7	All rights E Size Distribution Representation Sin - Rammler - Bennett distribution Also called Rosin - Rammler - Sperling Also called Weibull distribution. It is probably the most well-known dist RRB is widely used to analyse all types The conventional RRB function is desc $\mathbf{R} = 100 \times e^{-\begin{pmatrix} \mathbf{x} \\ \mathbf{n} \end{pmatrix}^{\mathbf{m}}}$ (Main equal Where: R = mass retained in % K = size in microns m = slope of the plot a = size at 36,8% of particles retained From the equation hereabove, we obt $\underbrace{100}_{\mathbf{R}} = e^{\begin{pmatrix} \mathbf{x} \\ \mathbf{n} \end{pmatrix}^{\mathbf{m}}}_{\mathbf{R}}$ Considering that we take the logs on that $\underbrace{\log\left(\frac{100}{\mathbf{R}}\right) = \begin{pmatrix} \mathbf{x} \\ \mathbf{n} \end{pmatrix}^{\mathbf{m}}}_{\mathbf{R}}$	w.thecementgrindingoffice ation (Part 3) on (RRB): - Bennett (RRSB) distribution. tribution in the cement and the mining of materials, crushed or not, ground of ribed by: tion of RRB) (36,8 is the ratio 100/e and e is the Ner ain: both sides of the equation, we have: < log e	g office g industry. or not. per number - 2,718)	

$$\log \log \left(\frac{100}{R}\right) = m \times \log \left(\frac{x}{a}\right) + \log \log e$$

nd:
$$\log \log \left(\frac{100}{R}\right) = m \times \log x - m \times \log a + \log \log a$$

and:
$$\log \log \left(\frac{100}{R}\right) = m \times \log x + C$$

- The size parameter a can be determined by classifying a given material on a mesh size a = x.
 This substitution in the main equation hereabove will produce a constant of about 36.8% material retained.
- The RRB representation with a log.log vs log should be a straight line.
- Example:

а

Sieve in µ (x)	Passing cumulated in %	Residue cumulated in % (R)	100/R	log(100/R)	log(x)	log.log (100/R)
1	7,6	92,4	1,082	0,0343	0,000	-1,464
4	19,5	80,5	1,242	0,0942	0,602	-1,026
16	46,8	53,2	1,880	0,2741	1,204	-0,562
32	75	25	4,000	0,6021	1,505	-0,220
48	88,7	11,3	8,850	0,9469	1,681	-0,024
64	97,2	2,8	35,714	1,5528	1,806	0,191
96	99,7	0,3	333,333	2,5229	1,982	0,402
200	99,9	0,1	1000,000	3,0000	2,301	0,477

- We transform the original particle size and percentages of passing data using logarithm and log.log, and we plot on the here below graphic where axis are cartesian:

- We can see that it is necessary to modify the X and Y axis in order to get a readable and intelligible representation.
- On the X-axis, for example, 0 must be replaced by 1, 1 by 10, etc...
- On the Y-axis, -1,5 must be replaced by 7% of residue cumulated, -1 by 20,6%, etc...
- When the RRB distribution is plotted (blue line in the graph hereabove), it is still necessary to
- calculate a trendline (or a linear regression) in order to know the slope of the PSD (particle size distribution).
- In the example, m = 0,9055 with a normal correlation.
- The slope of the PSD of a cement, for example, is an important factor.
- More the slope is higher and tighter is the PSD.
- A tighter PSD means less superfines particles (< 3 microns) and less coarser particles (> 32 microns).
- A tighter PSD can be obtained with a good separator.

www.thecementgrindingoffice.com

- The RRB calculator of the website doesn't have the right scale due to the limitations of the Excel converter.

http://www.thecementgrindingoffice.com/rrb.html

- At the contrary, the calculator which is available in the Tromp RRB Kit software
- represents
- the real log.log vs log scale (like the special RRB paper).

http://www.thecementgrindingoffice.com/cvs.html

- Graphic with the right scales and the original values:

8 Log - Normal distribution:

- Also known as Galton distribution.
- In the probability area, a lognormal distribution, or lognormal, is the probability distribution of a random variable x whose logx logarithm follows a normal distribution.
- The equation of the log-normal distribution is the following:

$$\operatorname{erf}(z) = \frac{2}{\sqrt{\pi}} \int_0^z e^{-z^2 \cdot \cdot} dz$$

Where:

- z = approximate polynomial function of the inverse function of integral probability
- D = particle size dimension in μm
- D50 = mean geometric diameter in μm
- σ = standard deviation
- Parameters are D_{50} and $\sigma.$
- The Y-axis is a probability of passing cumulated in %, then it uses a probability scale.
- As Gaudin Schuhmann and Rosin Rammler Bennett models may be linearized modifying the original values in log or log.log, one can compare them.
- At the contrary, it is not possible with the Log Normal model.
- Following this, Lawless (1978) developed equations to obtain a linear correlation coefficient for lognormal distribution (*).
- These equations have an insignificant absolute error and are the following:

For $0 < x \le 50\%$

$a + b.t + c.t^2$	a _ t
$z = -t + \frac{1}{1 + d.t + e.t^2 + f.t^3}$	z = t

Where:

x = percentage of passing cumulated for a given size (*)

(*) Be carreful because the equations don't accept a value of 0% or 100%

t = a parameter to solve z

z = approximate polynomial function which will replace x

a, b, c, d, e and f = constants with the following values:

а	2,51557	
b	0,802853	
с	0,010328	
d	1,432788	
е	0,189269	
f	0,001308	

 Reference: Log-normal model linearization for particle size distribution, Laércio Montovani Frare, Marcelino Luiz Gimenes, Nehemias Curvelo Pereira e Elisabete Scolin Mendes (Departamento de Engenharia Química, Universidade Estadual de Maringá, Av. Colombo, 5790, 87020-900, Maringá-Paraná, Brasil).

www.thecementgrindingoffice.com

- Example:

Sieve in µ (D)	Passing cumulated in % (x)	ln(D)	t	Z
1	7,6	0,00	2,270	-1,43275796
4	19,5	1,39	1,808	-0,85945552
16	46,8	2,77	1,232	-0,08008182
32	75	3,47	1,665	0,67417561
48	88,7	3,87	2,088	1,21084581
64	97,2	4,16	2,674	1,91145128
96	99,7	4,56	3,409	2,74814884
200	99,9	5,30	3,717	3,09051634

- We transform the original particle size and percentages of passing data using natural logarithm and z, and we plot on the here below graphic where axis are cartesian:

- Graphic with the right scales and the original value:

